2D Array - DS solution
Given a 2D Array, :
1 1 1 0 0 0
0 1 0 0 0 0
1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
An hourglass in is a subset of values with indices falling in this pattern in 's graphical representation:
a b c
d
e f g
There are hourglasses in . An hourglass sum is the sum of an hourglass' values. Calculate the hourglass sum for every hourglass in , then print the maximum hourglass sum. The array will always be .
Example
-9 -9 -9 1 1 1
0 -9 0 4 3 2
-9 -9 -9 1 2 3
0 0 8 6 6 0
0 0 0 -2 0 0
0 0 1 2 4 0
The hourglass sums are:
-63, -34, -9, 12,
-10, 0, 28, 23,
-27, -11, -2, 10,
9, 17, 25, 18
The highest hourglass sum is from the hourglass beginning at row , column :
0 4 3
1
8 6 6
Note: If you have already solved the Java domain's Java 2D Array challenge, you may wish to skip this challenge.
Function Description
Complete the function hourglassSum in the editor below.
hourglassSum has the following parameter(s):
- int arr[6][6]: an array of integers
Returns
- int: the maximum hourglass sum
Input Format
Each of the lines of inputs contains space-separated integers .
Constraints
Output Format
Print the largest (maximum) hourglass sum found in .
Sample Input
1 1 1 0 0 0
0 1 0 0 0 0
1 1 1 0 0 0
0 0 2 4 4 0
0 0 0 2 0 0
0 0 1 2 4 0
Sample Output
19
Explanation
contains the following hourglasses:
The hourglass with the maximum sum () is:
2 4 4
2
1 2 4
solution :-
#!/bin/python3
import mathimport osimport randomimport reimport sys
def hourglassSum(arr): # Write your code here maxsum=-63 for i in range(4): for j in range(4): top=sum(arr[i][j:j+3]) mid=(arr[i+1][j+1]) bot=sum(arr[i+2][j:j+3]) hg=top+mid+bot maxsum=max(hg,maxsum) return maxsum
if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w')
arr = []
for _ in range(6): arr.append(list(map(int, input().rstrip().split())))
result = hourglassSum(arr)
fptr.write(str(result) + '\n')
fptr.close()
Comments
Post a Comment
If you have any doubt you ask me in comment section